3.2: Using Matrices to Solve Systems of Equations

Definition 1. A linear equation in n variables $x_{1}, x_{2}, \ldots, x_{n}$ is of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

where a_{1}, \ldots, a_{n}, b are constants. Again, the numbers a_{1}, \ldots, a_{n} are the coefficients for the variables x_{1}, \ldots, x_{n}, respectively.

Remark 1: When the number of variables is small (≤ 3), we usually let $x_{1}=x, x_{2}=y$, and $x_{3}=z$.

Definition 2. A matrix is a rectangular array of numbers. The augmented matrix of a system of linear equations is the matrix whose rows are the coefficient rows of the equations.

Example 1. Consider the system of equations

$$
x+y=3, \quad x-y=1 .
$$

The augmented matrix of the system is given by

$$
\left[\begin{array}{ccc}
1 & 1 & 3 \\
1 & -1 & 1
\end{array}\right]
$$

Elementary Row Operations. When dealing with an augmented matrix, the rows become representative of the equations themselves. So multiplying, adding or switching the orders of rows is the same as multiplying, adding or switching the orders of the equations they represent. In this way, we can use the augmented matrix to solve a system of equations.

Example 2. Use the Gauss-Jordan Reduction of the augmented matrix to solve the system

$$
\begin{gathered}
x-y+5 z=-6 \\
3 x+3 y-z=10 \\
x+3 y+2 z=5 .
\end{gathered}
$$

